Honors Physics Study Guide

Created by Rachael Romero for use at Simple Studies
https://simplestudies.edublogs.org \& @simplestudies4 on Instagram

Breakdown of Units

**topics discussed may vary between schools. The units in this guide are the main topics discussed in many physics courses.

Unit 1: Kinematics (1D and 2D motion)
Unit 2: Newton's Laws of Motion
Unit 3: Circular Motion

Unit 4: Work and Energy
Unit 5: Electric Currents and Magnetism

1 Dimensional Motion

Introduction to Speed and Velocity

Key Equations:

Average speed $=($ distance $) /($ time $)$

Average velocity $=($ displacement $) /($ time $)$

Velocity: The rate at which position changes (basically speed with direction)
Displacement: Distance and direction from the starting point (ex: 30 meters 10° west)
Speed how fast you are travelling

https://www.coolkidfacts.com/speed-and-velocity/ http://thescienceclassroom.org/physics/motion-in-1-d/distance-and-displacement/

Example Problems:

(1) Finding distance given speed and time

Avg. speed= $70 \mathrm{mi} / \mathrm{hr}$
Time $=14$ hours
Distance= ?

How to solve:

Equation: Average speed=(distance)/(time)
Rearrange equation: distance=(avg speed)(time)
Substitute: distance=(70)(14)
Final Answer: distance=980 miles
(2) Finding time given speed and distance

Avg. speed: $75 \mathrm{mi} / \mathrm{hr}$
Distance: 360 mi
time=?
time $=($ distance $) /($ avg. speed $)=(360) /(75)=\underline{4.8 \mathrm{hrs}}$
(3) Word problem using travel in 2 directions
 is the average speed? What is the average velocity?

Tip: when tackling word problems underline all the numbers given to you and then write them out with what unit of measurement that number represents. This makes it easier to figure out which equation is best to use. In the case of two different directions using two different colors to differentiate between numbers can also be helpful.

Travel in the East Direction
Speed=30 m/s
Time $=4$ seconds
Travel in the West Direction
Speed $=50 \mathrm{~m} / \mathrm{s}$
Time $=3$ seconds
distance $=(30)(4)=120$ meters
distance $=(50)(3)=150$ meters

Average speed $=($ total distance $) /($ total time $)=(120+150) /(7)=38.57 \mathrm{~m} / \mathrm{s}$
Average velocity $=($ displacement $) /($ total time $)=(120-150) /(7)=-4.3 \mathrm{~m} / \mathrm{s}$ or $4.3 \mathrm{~m} / \mathrm{s}$ west
** when finding the displacement think of the east direction as positive and the west direction as negative
(4) Word problem using two objects traveling in different directions

Two trains are 1600 meters apart and heading toward one another. Train A is headed north at $\underline{10}$ $\underline{\mathrm{km} / \mathrm{hr}}$ while train B is headed south at $\underline{15 \mathrm{~km} / \mathrm{hr}}$ Where and when will they collide?

1 Dimensional Motion

Acceleration

Acceleration: The rate of change of velocity (every second it gains x amount of speed) Equation: acceleration=(change in velocity)/(time)

Example: 0-60 mi/hr in 4 seconds
acceleration=(change in velocity)/(time) $=(60-0) /(4)=15(\mathrm{mi} / \mathrm{hr}) /(\mathrm{s})$
(every second it gains $15 \mathrm{mi} / \mathrm{hr}$)

Kinematic Equations -have these memorized!
final velocity $=$ initial velocity $+($ acceleration $)($ time $)$
displacement $=($ initial velocity $)($ time $)+(1 / 2)($ acceleration $)\left(\right.$ time $\left.{ }^{\wedge} 2\right)$
final velocity=initial velocity^2 $+(2)($ acceleration $)($ distance $)$

More pointers about displacement, velocity, and acceleration

1. When displacement is positive, the object is to the right of zero (or above zero)
2. When velocity is positive, the object is heading to the right of zere(or up)
3. If acceleration is positive, the force is to the right or upwards ($* *$ force is a push or pull)

Free Fall

- Objects fall under the influence of gravity alone
- Any object, regardless of weight accelerate at the same rate
- Freefall rate of acceleration: 9.8 $\underline{\mathrm{m} / \mathrm{s}^{\wedge} 2}$

Acceleration due to gravity $=-9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2$

the ball gains $\approx 10 \mathrm{~m} / \mathrm{s}$
of speed every second

(1) How fast was the ball thrown? (it took 1.8 seconds for the ball to hit the ground after thrown)

Equation: final velocity $=$ initial velocity $+($ acceleration $)($ time $)$

How to go about solving: Cut the time in half so that you can solve using the amount of time it took for the ball to get to the top. At the top, the velocity of the ball is 0 , so that can be used as the final velocity.
$0=($ initial velocity $)+(-9.8)(.9) \rightarrow \underline{\text { initial velocity }=8.82 \mathrm{~m} / \mathrm{s}}$
(2) How high did the ball go?

Equation: displacement $=($ initial velocity $)($ time $)+(1 / 2)($ acceleration $)\left(\right.$ time $\left.{ }^{\wedge} 2\right)$

How to go about solving: since we have all of the values needed to plug into the equation we would just have to substitute to solve for the displacement, or in this case; height.
displacement $=(8.82)(.9)+(1 / 2)(9.8)(.9)^{\wedge} 2 \rightarrow$ height $=3.969 \mathrm{~m}$

2 Dimensional Motion

Vector: magnitude and direction	velocity	displacement	acceleration	force
Scalar: magnitude only	volume	mass	speed	length

$m=$ resultant

Rules for vector addition:

1. Place vectors tail to tip
2. Draw resultant from opent tail to open tip
3. Report magnitude and direction

* put calculator in degree mode

Equations for Projectiles:

Examples

how far from the base of the cliff does he land?

$$
\begin{aligned}
& y=\frac{1}{2} g t^{2} \rightarrow t=\sqrt{\frac{2 y}{9}}=\sqrt{\frac{2(-25)}{-9.8}}=2.26 \mathrm{sec} \\
& x=v_{x}+\rightarrow x=(15 \mathrm{~m} / \mathrm{s})(2.26 \mathrm{sec})=33.9 \mathrm{~m}
\end{aligned}
$$

Upwardly Launched Projectiles:

Newton's Laws

Force: push or pull

- Unit: Newtons (N)
- Mass: amount of matter (kg)
- Volume: amount of space ($\mathrm{m}^{\wedge} 2$)
- Weight: force due to gravity (N)
- weight=(mass)(9.8)

Drawing Freebody Diagrams:

$\Sigma F_{y}=T_{2} \sin \theta+T_{1} \sin \phi-m g=0$

Newton's First Law: If the sum of the forces (net force) $=0$, then the acceleration $=0$

Inertia: Resistance to a change in motion (dependent on mass)

- Larger mass=larger inertia

Newton's Second Law: If the net force doesn't equal zero, the the acceleration doesn't equal zero

$$
\begin{aligned}
& \sum F_{x}=P-\mathcal{F}=m a \rightarrow 20-8=4 a \quad a=3 \mathrm{~m} / \mathrm{s}^{2} \\
& \sum F_{y}=n-m g=0 \rightarrow n=m g=40 \mathrm{~N} \quad \text { IF } M r \operatorname{THEN} A \perp\left(a \alpha \frac{1}{m}\right) \\
& f=8 \mathrm{~N} \quad n=40 \text { no vertical acceleration! } \\
& a=\frac{\varepsilon F}{m} \\
& \Sigma F=m a \quad T-m g=m a
\end{aligned}
$$

Newton's Third Law: For every action there is an equal and opposite reaction.

Friction

Angled Forces

$\left\{\begin{array}{l}\text { find acceleration: } \\ \Sigma F_{y}=n-m g+T_{\sin } \theta=0 \\ \Sigma F_{x}=T_{\cos } \theta-\mathcal{F}_{k}=m a\end{array}\right.$
$T \cos \theta-M_{k} n=m a$
$n=m g-t \sin \theta$
$T \cos \theta-M\left(m g-T_{\sin } \theta\right)=m a$
$m=\frac{T \cos \theta-\mu(m g-T \sin \theta)}{a}$

$\left\{\begin{array}{l}\text { find acceleration: } \\ \Sigma F_{y}{ }^{\circ} n-m g+p_{\sin } \theta=0 \\ \Sigma F_{x}=p \cos \theta-f_{k}=m a\end{array}\right.$

$$
\begin{aligned}
& P \cos \theta-M n=m a \\
& P \cos \theta-M(m g+P \sin \theta)=m a
\end{aligned}
$$

$a=\frac{P \cos \theta-\mu(m g+P \sin \theta)}{m}$

$$
\begin{aligned}
\sum F_{y} & =n-m g \cos \theta=0 \rightarrow n=m g \cos \theta \\
\Sigma F_{x} & =m g \sin \theta=m a \\
a & =g \sin \theta
\end{aligned}
$$

no friction!!

$$
\begin{aligned}
& \sum F_{y}=n-m g \cos \theta=0 \\
& \Sigma F_{x}=m g \sin \theta-J_{k}=m a
\end{aligned}
$$

$$
\begin{aligned}
& m \sin \theta-M n=m a \\
& a=\frac{g \sin \theta-M(g \cos \theta)}{m}
\end{aligned}
$$

$$
\varepsilon F_{y}=n-m g \cos \theta=0
$$

$$
\begin{aligned}
& \Sigma F_{x}=F-F_{k}-m g \sin \theta=m a \\
& P-\mu n-m g \sin \theta=m a \\
& a=\frac{\rho-M m g \cos \theta-m g \sin \theta}{m}
\end{aligned}
$$

Atwood Machine Examples:

$$
\left.\begin{array}{rl}
\sum_{F_{2}}=T-m g_{1}=m a \\
L_{T} & \\
& \begin{array}{rl}
T-20 & =2 a \\
60-T & =6 a \\
40 & =8 a \\
F_{0} & =m g-T=m a
\end{array} \\
L_{60-T}=6 a & a
\end{array}\right)
$$

$$
\begin{gathered}
\sum F_{\text {system }}=m_{s} g-m_{3} g=\left(m_{3}+m_{5}\right)(a) \\
s 0-30=8 a \\
a=2.5
\end{gathered}
$$

$$
\begin{aligned}
\Sigma F_{1} & =T-F_{k}=m_{1} a \\
& =T-\mu_{2} n=m_{1} a \\
& =T-\mu_{k} m_{1} g=m_{1} a \\
& =T-(0.1)(30)=3 a \\
& T-3=3 a \\
\Sigma F_{2} & =20-T=2 a
\end{aligned}
$$

Quick way:

$$
\begin{aligned}
\Sigma F_{\text {system }}: 20-3 & =5 a \\
a & =3.4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Circular Motion

\(\left.\begin{array}{ll}Period: +ime for 1 circle

frequency: \# of circles per second\end{array}\right]\) inverse relationship \quad| $T=1 / f$ |
| :--- |
| |

$$
a=\frac{\Delta v}{t}=\frac{v-v_{0}}{t}=\frac{v_{0} \square}{t}=\text { acceleration }
$$

centripical = inward

$$
a_{c}=\frac{v^{2}}{r} \rightarrow \text { amount of acceleration }
$$

$$
V=\frac{2 \pi r}{T} \quad T=1 / f \quad f=1 / t \quad a_{c}=\frac{u^{2}}{r} \quad f_{c}=\frac{m v^{2}}{r}
$$

Friction during circular motion:

Vertical Circles

$$
\begin{array}{ll}
\Sigma F_{e}=T+m g=\frac{m v^{2}}{r} & T=\frac{m v^{2}}{r}-m g \\
\varepsilon F_{c}=T-m g=\frac{m v^{2}}{r} & T=\frac{m v^{2}}{r}+m g
\end{array}
$$

$$
n=\frac{m v^{2}}{r}=m g
$$

$$
\begin{aligned}
& n-m g=\frac{m v^{2}}{r} \\
& n=\frac{n v^{2}}{r}+m g
\end{aligned}
$$

minimum speed to complete a circle ($V_{\min }$)
$T+m g=\frac{m v^{2}}{r}$
@ $V_{\text {min }} T$ approaches zero $\quad t+m g=\frac{m v^{2}}{r} \rightarrow v_{\text {min }}=\sqrt{g r}$

\longleftarrow don't go less than the $\sqrt{g r}$!

Gravity

m_{1}

Kepler's Third Law

$\frac{36 \mathrm{~S}^{2}}{93^{3}}=\frac{88^{2}}{r_{m^{3}}} \quad r_{m}=36.03 \mathrm{~mm}$

$\frac{t e^{2}}{r_{e}{ }^{3}}=\frac{t_{n}{ }^{2}}{r_{n}{ }^{3}} \quad \frac{365^{2}}{93^{3}}=\frac{60190^{2}}{r_{n}^{3}}$

$$
r_{n}=2197 \mathrm{~mm}
$$

${ }^{m}$

Work and Energy

$\Sigma F_{x}=T \cos \theta-\Psi_{k}=m a$
isocos $30-(0.2)(317)=40 a$


```
calculate the work done by each force:
\(W_{\text {tension }}=\) Tdcose \(=(150 \mathrm{w})(7 \mathrm{~m}) \cos 30^{\circ}=909 \mathrm{~J}\)
\(W_{m g}=(\mathrm{mg}) \mathrm{d} \cos \theta=(40 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 90^{\circ}=0 \mathrm{~J}\)
\(W F=F_{k} d \cos \theta=\left(\mu_{k} \pi\right) d \cos \theta=(0.2)(317 \mathrm{~N})(7 \mathrm{~m}) \cos 180=-444 \mathrm{~J}\)
\(W_{n}=\eta d \cos \theta=0 \mathrm{~J}\)
\(W_{\text {NET }}=909+0+-444+0=465 \mathrm{~J}\)
```


Types of Energy

Kinetic energy: the energy of motion

Potential energy (gravitational) : energy of position (height)
potential energy (elastic): energy of position (stretch)

Work Energy Theorem

$$
\begin{aligned}
W=\Delta E & \\
w=\frac{1}{2} m v^{2}-\frac{1}{2} m V_{0}^{2} \quad w=m g h-m g n_{0} \quad & =\frac{1}{2} k x^{2}-\frac{1}{2} k x_{0}^{2}
\end{aligned}
$$

$$
\begin{array}{cc}
W=\Delta E & \\
W=\frac{1}{2} m v^{2}-\frac{1}{2} m V_{0}^{2} & w=m g h-m g n_{0} \\
& \\
& \\
& \\
& \\
& \\
& \\
u_{0}+k E_{0}=u+k & =P E+K E
\end{array}
$$

Ex 1. $\bigcirc^{v=0}$ Find the $\max _{0}$ height: $\varepsilon_{x} 2$.

$$
\begin{gathered}
y 0+k_{0}=u+k \\
1 / 2 \operatorname{mpv}^{2}=i k g h \\
1 / 2(30)^{2}=(9.8) h \\
h=45.9 \mathrm{~m}
\end{gathered}
$$

$$
\begin{gathered}
0 \\
u_{0}+k_{0}=d+k \\
\text { ingho }+1 / 2 \text { inv }{ }^{2}=1 / 2 h v^{2} \\
(9.8)(7)+1 / 2\left(11^{2}\right)=1 / 2 v^{2} \\
v=16 . \mathrm{m}^{\mathrm{m} / \mathrm{s}}
\end{gathered}
$$

$$
\begin{aligned}
& 0 \\
& Y_{0}+k_{0}=u+k \\
& l_{2} m_{0} v_{0}^{2}=m g h+1 / 2 h h^{2} \\
& 1 / 2\left(7^{2}\right)=(9.8)(6.16)+(1 / 2) \\
& 24 . s=60.4+1 / 2 v^{2} \text { not pe } \\
& \text { How fast does he have to ru } \\
& k_{0}+i_{0}=k+u \\
& 1 / 2 \operatorname{mu}_{0}^{2}=m g h \\
& (1 / 2)\left(v_{0}^{2}\right)=(9.8)(6.16) \\
& v_{0}=11 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
1 / 2\left(7^{2}\right)=(9.8)(6.16)+(1 / 2)\left(v^{2}\right)
$$

$$
\text { 24. } s=60.4+1 / 2 V^{2} \text { not possible (too slow) }
$$

How fast does he have to run?

Power

efficiency $=\frac{\text { energy out }}{\text { energy in }} \times 100$

Example: A 3 kg ball rolls down a 1.5 m high hill, it reaches a speed of $4.3 \mathrm{~m} / \mathrm{s}$. What was the efficiency of the energy transfer?
Heat

$\left|W_{3}\right|=$ heat
$\mu n d=$ heat
$W=+U_{0}+k_{0}{ }^{2} u+k+h e a t$


```
\(W=F d \cos \theta\)
\(W_{p}=(300)(6) \cos 0=1800 \mathrm{~d}\)
\(W_{m g}=(490)(6) \cos 90=0\)
\(W_{n}=0\)
    \(W_{j}=(\mu n) d \cos \theta=(0.15)(490) 6 \cos 180=-441 \mathrm{~J}\)
    \(W_{\text {Net }}=1359 \mathrm{~J}\)
\(w_{5}+40^{\circ}+k 0_{0}^{\circ}=\ddot{\mu}^{0}+k+\) heat
    \(1800=k+441\)
        \(k=1359 \mathrm{~J}\)
```

Ex 1: Question: How far does it slide before coming to rest?

$\omega+y_{\sigma}+k_{0}=\mu+x+$ heat
$1 / 2 m v_{0}^{2}=\mu n d$
$1 / 2 \mathrm{MaVo}^{2}=\mu \operatorname{tog} d$
$(1 / 2)\left(30^{2}\right)=(0.2)(9.8) d$
$d=229.6 \mathrm{~m}$

Ex 2

$$
\begin{aligned}
& x^{0}+y_{0}^{0}+k_{0}=u_{0}+k 0_{0}^{0}+\text { hear } \\
& 1 / 2 m v_{0}^{2}=m g h+\mu n g \cos \theta d \\
& (1 / 2)\left(20^{2}\right)=(9.8)(d \sin \theta)+(0.3)(9.8 \cos 30)(d) \\
& 200=(9.8)(d \sin \theta)+2.5 S d \\
& 200=d(9.8 \sin 30+2.5 S) \\
& d=26.8 \mathrm{~m}
\end{aligned}
$$

Ex 3

How much heat is produced?

$w+y \sigma+k_{0}=u+k+$ heat
$(1 / 2)(3)\left(10^{2}\right)+(1 / 2)(6)\left(s^{2}\right)=$ hear heat $=225 \mathrm{~J}$

Electric Currents and Magnetism

Electricity

$6.25 \times 10^{18} e^{1} \mathrm{~s} \Rightarrow-1$ coulomb
$6.25 \times 10^{18} \mathrm{p}$'s $\Rightarrow+1$ coulomb
$5^{\text {micro coulomb }}$
$1 \mu \mathrm{c}=1 \times 10^{-6} \mathrm{c}$
$s \mu c=5 \times 10^{-6} \mathrm{c}$
coulomb's Law
$F=\left|\frac{k q_{1} a_{2}}{r^{2}}\right|$
$F=$ force (N)
$k=9 \times 10^{9}\left(\frac{\mathrm{Nm}^{2}}{\mathrm{c}}\right)$
$\left.\begin{array}{l}q_{1}= \\ q_{2}=\end{array}\right) \rightarrow$ charge (c)
$r^{2}=$ distance between charges (m)

Find the force q_{1} has on q_{2} $F=\left|\frac{k \cdot a_{1} \cdot a_{2}}{r^{2}}\right|=\left|\frac{\left(9 \times 10^{-9}\right)\left(3.2 \times 10^{-19}\right)\left(1.6 \times 10^{-19}\right)}{(0.35)^{2}}\right|=3.76 \times 10^{-27} \mathrm{~N} \leftarrow$

Conduction: material in which electrons tend to be free and therefore rearrange and flow easily.

Insulator: material in which electrons do not tend to be free and therefore do not rearrange and flow easily.

Methods of Charging

Conduction \rightarrow "touch" Induction \rightarrow no touch-bring near

$+\underset{\mathrm{N}_{-}}{+6 \mathrm{C}} \xrightarrow{\text { touch }}+3 \mathrm{C}$

(-ic) (OC) touch -1.5 -1.5
(-8) touch +2 +2
$t=2 \mathrm{~s}$

(-8) +ac touch
-

Current Electricity
Ohm's Law: $I=\frac{V}{R}$
$R=$ resistance $\quad 1 \Omega$ unit: ohm $=1 \frac{V}{A}$
\rightarrow opposition to flow

If V goes \uparrow, then the current (I) goes $\downarrow \quad I \alpha V$
If R goes \uparrow then I goes \downarrow
$I \propto \frac{1}{R}$

Equation for Power

Series Circuits

Rules + Example

(1) R total $=R_{1}+R_{2}+R_{3}=1+2+3=6 \Omega$
(2) I total $=\frac{V_{t}}{R_{t}}=\frac{12}{6}=2 \mathrm{amps}$
(3) $V_{1}=\mathbb{R}_{1}=(2)(1)=2$ volts of electrical pressure through R_{1}
(4) $V_{T}=V_{1}+V_{2}+V_{3}=2 v+4 v+6 v=12 v$

Parallel Circuits

Rules:
(1) $R_{T}=\left(R_{1}^{-1}+R_{2}^{-1}+R_{3}^{-1}\right)^{-1}$
$=\left(1^{-1}+2^{-1}+3^{-1}\right)^{-1}=0.545 \Omega$
(4) $I_{1}=\frac{V}{R_{1}}$
$I_{2}=\frac{v}{R_{2}}$
(2) $I_{+}=\frac{V_{T}}{R_{T}}=\frac{12}{.545}=22 \mathrm{amps}$
(3) $V_{T}=V_{1}=V_{2}=V_{3}$
(5) $I_{T}=I_{1}+I_{2}+I_{3} \leftarrow$ kirchoffs loop rule conservation
energy

Combination Circuits

Rules:

(1) $R_{T}=\left(2^{-1}+3^{-1}\right)^{-1}+1=2.2 \Omega$
(2) $I_{t}=\frac{V_{t}}{R_{T}}=\frac{12}{2.2}=5.45 \mathrm{amps}$
(3) Varop across mainine resitors: $V_{1}=\left(R_{1}=(S .4 S)(1 \Omega)=5.45 \mathrm{~V}\right.$ (4) find ieftover voltage: $12 \mathrm{v}-5.4 \mathrm{SV}=6.5 \mathrm{SV} \leqslant$ for parallel part

Magnetic Forces

There is a magnetic field that goes from the north to south field

The Right Hand Rule

This video provides some great examples of the right hand rule as it is a difficult concept to understand without being talked through it: https://www.youtube.com/watch?v=1KEt5bvn7LU

Calculating the magnitude of the magnetic field

$$
\begin{aligned}
& 4 \pi \times 10^{-7} \frac{\mathrm{Tm}}{\mathrm{~A}} \\
& B=\frac{N 0 I \rightarrow \operatorname{current}(A)}{2 \pi R} \\
& \stackrel{\downarrow}{\text { Magnetic }} \\
& \text { Ladistance (m) } \\
& \text { field } \\
& \text { (Testa) }
\end{aligned}
$$

Magnetic Forces

os

Example:

$$
\begin{aligned}
& F=(10)(4)(2) \cos 90: 80 \mathrm{~N} \leftarrow
\end{aligned}
$$

